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The process of neutralizing a spherically diverging ion current is con- 
sidered. It is shown that two different types of behavior are possible 
for the potential in the neutralized flow depending upon the values of 
the characteristic parameters. In contrast to the plane characterised 
by undamped potential oscillations [ t -4] ,  in the spherical case, the 
potential either performs damped osciiIations or montonically ap- 
proaches a limiting value. As an example, numerical results are 
given for the case of a cesium ion current neutralized by electrons. 

Many articles have been devoted to the problem of neutralizing 
ion beams. These deal in detail with the neutralization process in a 
one-dimensional flat ion beam, where all the parameters depend 
only upon the distance to some plane. The solutions show that undamp 2 
ed potential oscillations occur if the dissipative processes are ignored 
[1-4]. Actually, beams of charged particles, if not subjected to ad- 
ditional focusing, diverge beyond the accelerating electrode. There- 
fore the problem of neutralizing a spherically diverging flow is of in- 
terest, since it approximates more closely the form of actual ion 
beams. 

Figure I shows the electrode arrangement used to obtain a spherical- 

ly cliverging flow. The first electrode of radius r ~ is the ion emitter, 
the second, a grid of radius r0, is the accelerating electrode, and the 
third, a neutralizing grid, is the source of oppositely charged particles. 
The ion current is created by the potential difference 50. Owing to 
the energy acquired in the accelerating gap 1, the ions reach the 
neutralizing grid, which is at a potential 0 -< ~ .  < ~0, and then en- 
ter the exterior region 3. The electric field of the ion beam extracts 
oppositely charged particles from the neutralizer; this flux then pro- 
pagates in the exterior space. The neutralizer is assumed to be ideal, 
i . e . ,  there is no limit to its emitting capacity. The problem of ac- 
celerating the beam in the accelerating gap was considered for the 
spherical case in [5] where the ion current is calculated as a function 
of the potential ~b 0 and the length of the accelerating gap. 
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Fig. 1 

The problem need not be solved for region 2, since the distance 
r . - r0  can always be chosen so that the entire ion flux reaches the 
neutralizer. Therefore we shall only consider the neutralization pro- 
cess in the exterior region. 

The behavior of such a mixed flow is described by the system 

of equations 

mu" = 2e ((I) --  qL), "l'~r~nu = y 

.llu~ ~ : 2e (0 o --- 0), 4~r~"ngq = J~ (1) 

d dq) 

tlere M, ui, and n i are, respectively, the ion mass, velocity, and 
density; m, u, and n a re ,  respectively, the mass, velocity, and den- 
sity of the oppositely charged particles; e is the electron charge (the 

particles are considered to be single-charged); q) is the potential; and 
Ji, J are the total fluxes of the corresponding particles. 

In deriving this system it was assumed for simplicity that the par- 
ticles leave the neutralizer with zero velocity. 

By eliminating the densities from the Poisson equation, we obtain 
an equation for the potential: 

The boundary conditions will be 

dO 
O =  O,. 4--7-=0 at r =  r , .  (3) 

Zero electric field intensity means that the current extracted 
from the neutralizer is limited by the space charge. This is a con- 
sequence of  the assumption of unlimited emission from the neutralizer. 

Introducing the dimensionless variables 

O - -  q), 
r --  d) ~ __ q), , r := r , e  I , (4) 

we obtain the basic equation 

d2(p@dq) ( a  t ) 

(5) 
&p 

q)=~)-s =0 for s=0, 

where 

= ~ V - ~  ' A = F ~ ( %  - o , )  ~#" (6) 

In the plane of the hodograph for r and r = d~o/ds obtained the 
equation is equivalent to the system 

d~ = * '  d~- = - - *  [-'1 .r . (7) 

This system does not have a periodic solution, since it satisfies the 
Bendixon criterion [6]. A singular point of the system is 

(p = ~- / (1 -F a2), * : 0. 

This point corresponds to an infinitely distant point. In order to 

establish the nature of the singular point, we expand the right side of 
system (7) in a series in the neighborhood of this point and, discarding 
terms of second order of smallness and above, we obtain the equation 

d~ b ~qh + 4 ,  (8) 
d(h 4 ,  

a 2 2/1 ( t  -]- a2) ~/2 
(~ I "q- ~2 @'(~1' )~2 = r 2 ] .  

The roots of its characteristic equation k S + k -t- 1/4~,~ = O are 
equal to 

Two cases are clearly possible. 

I) For k 2 -< 1. In this case, the singular point is a "node: The 

integral curves pass through this point. 
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2) For X 2 > 1. In this case the roots kt, z arc complex with a nega- 
tive real part. The singular point is a stable "focus. " The integral 
curves m the phase plane coil about this point. 

In the real plane, in case (1) the potential does not oscillate, but 
monotoncly increases from zero to its limiting value tpco = 0. 2 (t+a2) -1. 
Case (2) corresponds to damping potential oscillations near the limit- 
ing value. 

The behavior of the potential at large values of the parameter s 
is described by the asymptotic formulas 

~ =  ~oo + c, exp [-- '12 (t + 1 / t - -  k ' ) s ] +  

+ c  2 e x p [ - ' / a ( l -  1/t--k'a)sJ for k 2 < 1 ,  (9) 

= coo o + cse - ' / "  + c ,se  - y "  for k s = I , (10) 

q~ =tPco+e-V" (c s sin Vs 1 f~'-~'- is + 

+ c 6 cos x/2 t/'~-'~'-~ is) for k ~ ~> t �9 (11) 

At small values of the parameter s, the solution to equation (b) 
with corresponding boundary conditions has the form 

c~ 

r A a ~ ' h s %  %.~ g) = ~ ,~ ~ ~ a ~ s  ' / '~ .  (12)  
R = 0  

Below, values are given for the first coefficients in series (12): 

ao = l ,  a ,  = O, a ,  = - -  */~-~ (~/~Aa)  '/ ' ,  

a2 = - -  ~ / n ,  aa = */2sa~ ~, a2 = - - ~ s / a x ~ a a ,  . �9 �9 

In the phase plane, the integral curve passing through the origin 
will be 

c o  

r = ~'/, ~ b / s ' .  (la) 
k = o  

The coefficients of the expansion are found from the formulas 

b0 = 9. VA-a, b I = 0, ba = - - A  /b0, ba = --4/S 

A s 8A 4 A z ..1 
b~ ~ - -  2boa , b~ *= 35be  2 . b e = -25b0 2bo~ 4b ~ . 

0.r 

0 - - - - a ) - a ~  as ao I.o 12' 

. . . .  , -  

Fig. 2 

The rest can be computed from the recurrence relations 

1 4 
barn-1 = - -  "~o ( ~ " - ~ -  bam- i  -~- b lbam-2  -~- " ' "  

. . .  -~- b ib4m_i_ 1 + �9 . . + b 2 m - l b 2 m )  

1 2 
barn ~ - -  "~o ( 2 - - ' m ~  b4m-3 + b l b a m - !  ~- " " " 

i 
�9 . . - b  bt b4ra_ i {- �9 �9 �9 + "~ b2m ~ ) 

(14) 

, ( ,  
b 4 ~ l  - -  - -  b-~- / ~  b4~-2 ~- hb4 '~ ~ ' " "  

�9 �9 * "t- b lb4rn- t ,  1 i- �9 �9 �9 -]" b z m b 2 m ~ l )  

t (A ( ' ,m-  1)!! i 

1 
) (m = 1, Z, 3 . . . .  ). �9 �9 �9 + btb4m_t~2 �9 . . t -  "72 bzrn+12 

Let us uow estimate what kind of solution we will get for neutra- 
lization of a ccsiun] beam. Wc compute the quantity )~z from 

,~ [ I l = dj0,/, ] (1 - -  r  / d)o)'/' ~ m 

ttere I1 is the system perveance; this quantity is of the order 
10 "s - 10 "9 a/V s/2 for cases of interest [7]. 
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Fig. 9 

If we assume that ~ ,  << @0, then k z ~ 103 for neutralization by 
electrons, i . c . ,  we get damped potential oscillations. However, if 

the same beam is neutralized by negative ions, beginning with hy- 
drogen ions, then the potential does not oscillate, but monotonely 
increases to its limiting value. 

Figure 2 gives tire result of numerical calculation for the case of 
a cesium beam neutralized electrons (a = 2.71. t0 -s, A = 2.98-10-2). 

In the general case, the effect of the characteristic parameters 
A and c~ on the form of the solution for the potential is shown in Fig. 3. 
The region lying below the curve corresponds to monotonic behavior 
of the potential, while the region above the curve corresponds to 
damped oscillations. 
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